
Learning  Envelopes for Fault  Detection 
and  State  Summarization 1 

Dennis DeCoste 
Machine Learning  Systems Group 

Jet Propulsion  Laboratory / Caltech 
Pasadena,  CA 9 1 109 

dennis.decoste@jpl.nasa.gov 

Abstract --- This  paper  discusses a data mining approach  for 
overcoming  common  problems with the traditional  red-line 
limit-checking approach  to  fault  detection  and  state 
summarization.  It essentially involves learning  and  adapting 
parametric  functions which provide context-sensitive  bounds 
on historic  time-series engineering  data. Such  bounds are 
suitable as dynamic plug-in replacements  for static  red-line 
values. They  enable significantly earlier detection  while 
maintaining  low  false  alarm rates. An example will be 
discussed from  recent  onboard tests of this  technology 
during the NASA  Deep  Space 1 (DS 1) mission. 
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1. INTRODUCTION 
Autonomous  fault  detection in space systems  typically 
involves  comparing real-time data  to predefined  static ”red- 
line” limits. For  example, a fault in a heat  regulator  might 
be  detected when a particular  temperature  gets higher  than a 
given  threshold. Such limits are  popular  because they are 
relatively easy  to  specify and use.  But they have numerous 
disadvantages, which are  becoming increasely  significant as 
we move  toward  more  autonomous  spacecraft, including: 

1) late or  missed  alarms --- red-lines are relatively  weak 
(wide)  bounds,  detecting faults  only once they become 
critical,  and often even  dangerous.  Earlier  detection would 
support a wider range of recovery  procedures, including 
preventative  maintenance that  would extend mission life. 

2) false  alarms --- red-lines  are traditionally made  quite 
wide intensionally, in large part  to avoid false (“nuisance”) 
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alarms.  Nevertheless, such  false  alarms still occur routinely, 
sometimes resulting in mission operators eventually  ignoring 
red-line  alarms  in  those troublesome  sensors  altogether. 

3) failure to track  svstem  changes --- predefined red-lines 
fail to  capture  changes  during a mission,  such as gradual 
spacecraft  degraduation,  environmental  changes,  and  early 
mission “shake-out” (e.g.  versus  testbed performance). 

Handling these problems autonomously is essential  to 
autonomous fault diagnosis and recovery,  since fault 
detection is the  critical first step. 

Addressing  the above  problems typically involves 
substantial  manual effort.  One  common  approach  is  to 
manually develop  expert system rule  bases or state  models, 
to allow  different  red-line  values to be associated with key 
different contexts  (e.g.  spacecraft  operating  modes). A 
second common  approach is to continually  monitor 
performance  during the  mission,  manually  refining and 
uploading new red-lines as warranted. 

To address these problems without such high  manual costs 
and in an automous manner, we have been developing  data 
mining  techniques  which  essentially extract red-line 
functions from mission data. We call this approach  ELMER 
(Envelope Learning  and Monitoring using Error 
Relaxation). For  each  sensor, we learn a pair of upper and 
lower bounding functions,  called  its “envelope”. The inputs 
for  each  envelope  are automatically  restricted to a subset of 
the sensors --- those  which are most relevant  to  determining 
the  tightest  bounds for which  historic data  seldom falls 
outside of them. 

2. ENVELOPE LEARNING 
Consider the  task of predicting high H(y[t]) and low L(y[t]) 
bounding  values  for sensor y  at each  time t, based  on  input 
values from various other  sensors Xi at various  time lags, 
say t+ l ,  t, and t-1. Note that one  distinction  between classic 
time-series  prediction  and our  similar use here  for  detection 
tasks is that for  detection  it often makes  considerable  sense 
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to use current (i.e.  at t) and future (e.g. at t+l)  values of the 
input  sensors. 

For brevity, we will denote  the  set of all input sensors as X 
and  the  full  input set  at  each  time t,  over all those  sensors 
and time  lags as: 

Z[t] = X[t+l], X[t], X[t-11. 

Denote  the  parametric  form of these  bounds as follows: 

for  some  suitable  functional family  f, such as sigmoidal 
forms popular  in  neural  networks or  even  simple linear 
weight  sums. In this paper we will assume we are given  Z 
and f.  Candidates  can be supplied by users  and  futher 
refined  using a wide  variety of automated  model  selection 
and feature  selection techniques explored in  statistics and 
machine  learning work. 

In  practice,  it is not  critical  that  Z  contain  only  relevant 
quantities, since the parameter optimization  process will 
tend to  associate small  parameters with useless  inputs. 
Selecting an appropriate family  f  might  seem  more 
fundamentally critical  to  good prediction  performance. 
However,  practical  constraints often dictate this  decision as 
well. For  example, in recent  onboard  experiments we were 
restricted to  simple linear-weighted sums,  due  to both RAM 
and CPU limitations. 

To handle  such  practical  constraints,  our  focus has been on 
how to learn  values for  the  parameter vectors wH and wL, that 
lead to  good  results (e.g. low  false  alarm  rates and  better 
detectability  than  red-lines) even when  given  higher  non- 
ideal  inputs Z  and function family f. 

Bounds  Estimation  Techniques 

We view ELMER as a collection of techniques for 
performing  the task of bounds  estimation, as opposed to 
traditional regression techniques which emphasis  means 
estimation or  general probability  density  estimation. We 
have formulated several  methods  for bounds  estimation and 
have been exploring their  various  tradeoffs as well as 
comparing them to traditional  techniques. Common to all 
our techniques is the notion that bounds  estimation’s key 
distinction is that it  involves a special form of constrained 
optimization. In  particular, a prediction from a learned  high 
bounding  function  should not only be as close  to  the training 
target  value as possible, but also strictly above that  target. 

techniques we have implemented and  explored fall into two 
broad  categories: 

Memory-Based  Methods --- In  classic k-nearest  neighbors 
regression [ l ] ,  an estimation of the  input-conditional mean 
for y[t] is given by averaging the values y[tJ  associated 
with the  k  training examples  Z[tJ “closest” to  the new  test 
example Z[t],  based on  some  distance  metric (often 
Euclidian)  and  value of k. This  technique  can  be used to 
estimate  high (low)  bounds instead of means by essentially 
taking the maximum  (minimum) of the y[ti] values, instead 
of averaging  them. 

Model-Based  Methods --- A common  “error  bars”  [6] 
approach involves estimators of input-conditional  means and 
variances (see  Figure 1). Consider a variant, where the 
input-conditional  mean  estimation is used to  divide the 
training set into  “target is  above  the mean”  and  “target is 
below  the  mean”  subsets. A prediction model of the  error 
residual for  each  subset  is  learned, allowing error 
distributions which are asymmetric around  the mean to be 
easily  handled. The final  learned  high bounding function is 
H(y[t]) = Hb + Hs * M(Z[t]), where M(Z[t])  is  the mean 
estimation, Hb  is a bias  shift value and Hs  is a scaling  factor 
playing a role similar to a standard  deviation  factor in a 
Gaussian  model. 
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Our  envelope  learning  process  is essentially a generalization pigure 1 Network for Input-Conditional M~~~ and variance 
of standard  least  squared regression,  in  which  constraints to 
ensure that  most data  falls within the resulting  bounds are 
enforced.  There  are a variety of ways to  do so. The various 



Generalizing to Future  Test  Data 

Making  such  methods  generalize well to  future  data  requires 
further  details  beyond  the  basic  sketches given above.  For 
example,  one way to  determine  reasonable values for the Hs 
and Hb  parameters  above is to use a simplex  method of 
constrained  optimization  (over only those two  variables, for 
fixed  M(Z[t]))  and  extensively use  cross-validation to select 
the  widest fit (i.e. highest  Hb  and  Hs values)  that  any 90% 
subset of the  training  data  requires  to avoid  alarms on 10% 
hold out sets. Similarly,  for  methods  such as min/max k- 
nearest neighbors,  the  best k value  and  suitable shift  offsets 
to bound all  data  can be determined via  cross-validation as 
well. 

Tradeoffs  Among  Alternatives 

The  memory-based  bounding  methods  have  some key 
advantages,  including often being  more readily  understood 
by humans  during  post-detection (e.g. diagnosis) analysis, 
since  their  bounds violations are grounded in terms of 
specific  previous  sensor  behavior examples. We have 
focused  more  to  date on model-based methods, mainly 
because  onboard  applications, including  the DS1 Beacon 
experiment  discussed later below,  have tight space 
constraints that preclude on-line access  to vast historic 
databases.  However, we are beginning to  explore, within 
our  bounding  context,  appropriate ways to  combine both 
approaches.  One  such  approach  involves  support vector 
machines [9], which  identify subsets of examples which are 
most  valuable  for  retaining in  memory. 

An  important  property of ELMER is that it is very scaleable 
with respect  to  the  number of available  sensor inputs,  the 
available training data,  the  computational time  available for 
learning  and  adaptation, and the real-time  memory and CPU 
restrictions  for  representing and computing final  bounding 
functions.  It  finds  the  best  bounds it can with whatever it is 
given (even if that results in almost  static  red-line bounds  at 
that point), and can incrementally improve bounds as more 
is given later. 

3. RELATED WORK 
It is useful to  view  ELMER as a generalization of the static 
red-lines  traditionally  used in NASA  fault monitoring 
operations.  ELMER'S  bounds  are intended to work just  like 
red-lines in  that data  outside of those  bounds should be 
suspect. A key problem with red-lines  is that  attempts to 
avoid "nuisance  alarms", where red-lines  are excessively 
tight,  easily leads  to  red-lines that are  much  too wide to 
detect faults  until  very late (and  often  critical)  stages. 
Indeed,  our  work  on  ELMER  arose  from attempting to better 
capture  the context-sensitivity of the  domains,  for earlier 
detectability, while  not making  the  strong  error distribution 
assumptions  that  common statistical error bars approaches 

do.  Note that data  outside of error  bars based on  the mean 
plus or minus two standard  deviations will still occur  about 
5% of the time. That  is not acceptable  for  large-scale 
monitoring  tasks, for which thousands of sensors  are 
sampled  every second. 

The fundamental problem is that for  complex  engineering 
systems such as spacecraft,  the  error in achievable 
predictions  based on available  sensor  data  is  not primarily 
Gaussian, nor any other kind of standard  distribution.  Even 
when the  sensor  data  is sufficient to find a deterministic 
(plus  small  Gaussian  white  noise) model,  from a practical 
point of view that does not  help much if the step-wise 
regression  technique  being used has not yet  selected all the 
righnputs, out of the  thousands of (raw  and  transformed) 
candidates  to  consider.  Furthermore, the  mission's  memory 
and CPU limitations might well require  limiting  each 
function to a handful of the  relevant inputs. 

Asymmetric  Error 

A key distinction  between ELMER and other  machine 
learning  technologies is that it  learns  and  defines its  high 
and low bounds independently  and without assuming a 
specific prediction error distribution. Other  techniques,  such 
as neural networks  which  learn "error bars"  (e.g. estimates 
of the mean of the data as well as the  variance of the data 
[6]), assume  specific types of distribution of error, often 
symmetric (e.g. Gaussian).  ELMER  handles well such 
asymmetric error  distributions, which are  common in 
spacecraft  data  (due  to  engineering  set-points  and  other 
skewed  behavior). The  end result is  that  ELMER  can 
produce tighter bounds which  lead to  better  detections and 
trending  predictions. 

Probability  Density  Estimation 

There  does  exist a class of techniques,  called probability 
density  estimation (PDE) (e.g. [X]), which, like  ELMER, 
avoid the  problems of assuming  any specific  class of error 
distributions. Conditional probability densities explicitly 
represent  the  probability of each possible  output value, 
given the inputs. For  example, instead of assuming that error 
is distributed as a single  Gaussian, a PDE  approach  such as 
mixture  density  estimation  might use  hundreds of Gaussians 
of varying  parameters (i.e. centers and widths). With 
sufficiently large mixtures, any distribution  can eventually 
be modeled to any arbitrary  precision  using such  PDE. 

However, the  generality of PDE  is  both its  strength  and  its 
major weakness. To learn  the parameters of the mixtures 
well typically requires  orders of magnitude  more  data than 
the single regression  that ELMER  requires  for  each  bound. 
Similarly, PDE's with hundreds  of  Gaussians  are  orders of 
magnitude more  expensive  to  store and compute  at 
execution  time,  making them  much  more  expensive than 
ELMER  to use for  tasks  such as real-time monitoring. 



In short,  PDE  promises  more  than  is necessary  for  tasks  that 
only  require  bounds,  and  delivering  on  those  promises 
requires  excessive  resources  at  both  training  and  execution. 
Thus, we argue  that  ELMER’S  explicit  focus  on  estimating 
bounds is more  appropriate  for  many  tasks,  such as 
monitoring  and  resource  profiling.  For  some tasks, most 
notably  control,  invertable  models  are  critical.  For  such 
tasks, PDE of some  precision  is  generally  required.  One 
planned  extension  for  ELMER  is  to  generalize it with PDE 
capability, so that in an  anytime  fashion it finds  the  best 
trade-off  for a given  task  between  highllow  bounds  and  full 
precision  PDE. 

Extreme Value Theory 

Quartile  and  extreme  value  theory [7] techniques  have  been 
developed  within  the  field  of  statistics to help  characterize 
high  and  low  values  without  resorting  to  detailed  probability 
density  estimation.  Extreme  value  work  emphasizes  the  fact 
that  the  vast  majority  of  examples in most  data  sets  are  not 
extremas,  and  thus  models  based  on  them will be 
excessively  biased  toward  the  average  cases.  These 
techniques  are  based  on  the  mathematical  fact  that  the 
distributions  of  maximum  (minimum)  values (e.g. annual 
maximum  rainfall)  tends  to  fall  into a small  number of 
classes  that  can be characterized  by a small  number of 
parameters  that  can  be  estimated. 

Extrema  value  techniques  are  especially  popular  for 
environmental  and  insurance  studies.  For  example,  they  are 
used to  estimate  maximum  annual  rainfall  or  the  probability 
of  flood  levels  exceeding a given  level.  In  such  cases,  there 
are  natural  time  periods  over  which  one  can  compute 
maximums  (minimums)  and  the  data  is  univariate  or  there 
are  only  a  couple  of  relevant  input  variables.  They  seem 
less  applicable  to  our  general  spacecraft  monitoring  context. 

4. EXAMPLE 
For  example, in a recent  experiment  to  evaluate  our 
envelope  approach  onboard the NASA Deep  Space  1  (DS1) 
mission,  the  learned  envelope  for a battery  charge 
temperature  sensor  (P-4022)  correctly  represented  the  fact 
that it’s value  had  historically  been  within  2  degrees of 
related  battery  temperature  sensors  (P-4011  and  P-4021) 
during the first  few  months of the  mission. A later  fault  was 
then  detected  because  the  learned  high  bound  on  sensor  P- 
4022, whose  inputs  were  sensors  P-4011  and  P-4021,  was 
violated  when this previously  reliable  historic  relation 
suddenly  no  longer  held.  This  fault  was  much  more  subtle 
than  what  traditional  red-lines  on  those  temperature  sensors 
would have  detected. 

H I ( P - 4 0 1 1 )  = 0 . 1 3 4 1 8 8  + 1 . 6 3 2 8 9  + 
0 . 4 4 8 1 4 8  * P -4021  + 0 . 4 6 4 4 1 9  * P-4022 

LO(P-4011)  = - 0 . 6 0 5 2 9 7  - 2 - 2 9 4 8 9  + 
0 . 8 3 7 9 6 3  * P -4021  + 0 . 3 0 5 0 4 1  * P-4022 

H I ( P - 4 0 2 1 )  = 0 . 2 3 7 6 2 7  + 1 . 3 3 6 7 2  + 
1 . 1 9 1 7 4  * P -4011  - 0 . 1 9 8 5 1 5  * P-4022 

LO(P-4021)  = - 0 . 3 0 9 1 7 1  + 1 . 0 9 7 4 9  + 
0 . 1 3 8 6 9 5  * P -4011  + 0 . 7 7 8 7 3 5  * P-4022 

H I ( P - 4 0 2 2 )  = 0 . 3 6 1 2 5 7  + 1 . 4 9 8 3 2  + 
0 . 3 9 3 3 1 3  * P -4011  + 0 . 4 3 3 4 4 7  * P - 4 0 2 1  

LO(P-4022)  = - 0 . 3 6 9 4 3  - 2 . 9 1 2 0 8  + 
0 . 7 1 8 9 1 5  * P -4011  + 0 . 3 7 7 2 1 8  * P -4021  

Figure  2  shows  time-series  plots for sensor  P-4022  (and its 
bounds)  for  three  data sets: training  data  (top),  test  data 
(middle)  and  test2  data  (bottom). The training  set 
represented  the  last 44 days  of  1998. The test  set 
represented  the  first 30 days of 1999,  during  which  time the 
true  anomaly  occurred. The test2  set  represented  the 22 
days  before  the  training  set. As expected,  the  training and 
test2 data  did not  get  (false)  alarms,  but the  test  set  did  alarm 
just before  and  during  the  anomaly  (indicated by dark  black 
bar  along  bottom of the  middle  plot,  representing  times  for 
which  the  data  dropped  below  the low  bound  values). 

Figure 3 shows  the  training  data  (and  bounds)  for all three 
sensors.  Similarly,  Figure  4  shows  the  test  data  and  Figure 5 
shows  the  test2  data. 

5. CONCLUSIONS 
Our  bounds  estimation  techniques  are  also  applicable  to 
related  tasks,  such as “resource  profiling” [4] to  support 
planning  decisions in dynamic  environments (e.g. Mars 
Rover [5]). 

Despite  initial  promising  results, a couple of  key  issues  must 
still be  addressed to mature this technology  for  practical 
applications. 

The  bounding  functions  (learned using  the  model-based 
approach  discussed  above)  for  these  three  sensors  were  each 
linear  weighted sums of the  other  sensors  at  time t: 
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Figure 2 Sensor  P-4022  for  Train,  Test, and Test2  Data 

First,  ELMER  needs  to  be  extended  to  allow it to determine 
at  runtime when the  current  (test)  data is so dissimilar from 
the  training  data  that  the previously  learned bounds  are not 
applicable.  For  example,  autonomously  detecting such 
situations  is  required  to avoid false alarms when the test 
context is radically different  from  the training scenarios --- 
such as training during  cruise  phase of a mission  and  testing 
during orbit-insertion phase.  In a  general  probability  density 
estimation approach,  such  determination could be directly 
performed by evaluating  some (previously learned)  joint 
density estimate  for  the  current values of all the input 
sensors. That  is, a small likelihood in the  conditional 
probability of some quantity  should  not  itself  be the  cause 
for  declaring a fault  detection when  the  inputs  for  its 
estimation  are in fact  themselves very  unlikely.  Capturing 
this  distinction between  inputs  joint probability  and  output 
conditional  probability sufficiently for  the goals of bounds 
estimation, without incurring the  full cost of general  density 
estimation,  is  the  goal  for this  extension. An advantage of 

memory-based approaches  to  bounds  estimation mentioned 
earlier is that their  use of distance metrics  between  test  and 
training data already provides  some  such  distinctions (i.e. a 
nearest-neighbor which is still relatively  far  away  could be 
an indication  that  the  training data  is insufficient to 
confidently  bound the new data). 

Second,  ELMER  needs  to be extended  to  support  robust on- 
line adaptation of bounding  functions in light  of new data 
during a mission. This capability is required to track non- 
stationarities due  to system drift and degradation, as well 
when environmental conditions  turn  out  to  be  different that 
initial expectations (e.g.  ground  testbed for  Mars  rover). To 
date, our  work has  focused  on  learning  envelopes using 
batch  training, due  to  its simplicity of implementation and 
evaluation.  Also,  addressing  the  issues of when to  adapt and 
what portions of a model  to retain requires  first  addressing 
the above issue of detecting significant differences between 
previous  (training)  and new (test) data. 



Another  goal  for  the  ELMER  work is to  more  formally 
incorporate  an  ability  to  learn  probabilistic  graphical  models 
(e.g. Bayesian  networks)  from  the  data.  ELMER  currently 
uses  basic  concepts  from  the  field  of  Bayes nets, such as 
partial  correlations,  to  (heuristically)  identify  useful  inputs 
for  each  bounding  function.  Useful  extensions would 
include  refining  Bayes  net  algorithms  for  learning  causal 
(directed)  structures so that  they  work  well  within  the 
bounds  estimation  framework  of  ELMER. 

Finally,  near  term  goals  include  more  comprehensive 
evaluation of our  various  bounds  estimation  techniques, 
across  several  data  sets,  including  deep  space  missions, 
Mars  Rover, and Space  Shuttle. 
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Figure 5 Second  Test  Data  for  Sensors  P-4011,  P-402 1, and P-4022  (Occurred  Before  Training  Data) 
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